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Abstract

Introduction:We investigated single-nucleotide polymorphisms (SNPs) in IFITM3, an

innate immunity gene and modulator of amyloid beta in Alzheimer’s disease (AD), for

association with cognition and AD biomarkers.

Methods:We used data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI;

N= 1565) and AddNeuroMed (N= 633) as discovery and replication samples, respec-

tively.We performed gene-based association analysis of SNPs in IFITM3with cognitive

performance and SNP-based association analysis with cognitive decline and amyloid,

tau, and neurodegeneration biomarkers for AD.

Results: Gene-based association analysis showed that IFITM3 was significantly asso-

ciated with cognitive performance. Particularly, rs10751647 in IFITM3was associated

with less cognitive decline, less amyloid and tauburden, and less brain atrophy inADNI.

The associationof rs10751647with cognitive decline andbrain atrophywas replicated

in AddNeuroMed.

Discussion: This suggests that rs10751647 in IFITM3 is associated with less vulnera-

bility for cognitive decline andADbiomarkers, providingmechanistic insight regarding

involvement of immunity and infection in AD.
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Highlights

∙ IFITM3 is significantly associated with cognitive performance.

∙ rs10751647 in IFITM3 is associated with cognitive decline rates with replication.

∙ rs10751647 is associated with amyloid beta load, cerebrospinal fluid phosphory-

lated tau levels, and brain atrophy.

∙ rs10751647 is associated with IFITM3 expression levels in blood and brain.

∙ rs10751647 in IFITM3 is related to less vulnerability to Alzheimer’s disease patho-

genesis.

1 INTRODUCTION

Because herpes simplex virus was observed in post mortem brains

of patients with Alzheimer’s disease (AD) in the 1990s,1 association

between microbial infection and AD has been discussed with con-

troversy. Previous studies have shown that infection from pathogens

increased amyloid beta (Aβ) production in the brain, whichmay suggest

that Aβ is a defense reaction with an antimicrobial function;2–4 how-

ever, its regulatory mechanism in innate immunity and its association

with AD pathogenesis are largely unknown.

Recent large-scale genome-wide association studies (GWAS) have

provided genetic insight of the link between immunity and AD pathol-

ogy, revealing several AD-related genes with immune functions.5

Interferon-induced transmembrane protein 3 (IFITM3) is an innate

immune responder to viral infection and is known to restrict progres-

sion of viral infection.6 A recent study reported that IFITM3 binds to

γ-secretase, upregulates its activity, and increases production of Aβ in
AD.7 Additionally, expression levels of IFITM3were significantly higher

in the brains of patients with AD compared to cognitively normal older

adult controls and positively correlated with Aβ load in the brain.7

This implicates IFITM3 as an immune mediator with γ-secretase mod-

ulatory function with the ability to affect AD pathogenesis. Another

study showed that vulnerability to influenza may be altered, depend-

ing on a single nucleoid polymorphism (SNP) in IFITM3.8 Consid-

ering IFITM3 as a regulator of Aβ production, vulnerability to AD

may also vary depending on SNPs in IFITM3, which has not been

studied.8

Therefore, in this study, we aimed to identify SNPs in IFITM3 as

associated with clinical outcome and AD biomarkers. First, we per-

formed gene-based association analysis of SNPs in IFITM3 with cogni-

tive performance. Then, we performed SNP-based association analysis

in IFITM3 with cognitive decline; disease progression from mild cogni-

tive impairment (MCI) to AD; and amyloid (A), tau (T), and neurode-

generation (N) biomarkers measured from multimodal neuroimaging

(amyloid positron emission tomography [PET] andmagnetic resonance

imaging [MRI]), and cerebrospinal fluid (CSF). Finally, we performed

expression quantitative trait loci (eQTL) analysis to investigate associ-

ation between SNPs and IFITM3 expression levels.

2 METHODS

2.1 Participants

Participants in the study were non-Hispanic White participants from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and AddNeu-

roMed cohorts as discovery and replication samples, respectively.

The ADNI was launched in 2003 as a public–private partnership, led

by Principal Investigator Dr. Michael W. Weiner.9 The primary goal

of ADNI has been to test whether serial MRI, PET, other biological

markers, and clinical and neuropsychological assessment can be com-

bined to accurately measure the progression of MCI and early AD.

The AddNeuroMed is a cross European, public/private consortium

developed for AD biomarker discovery.10 AD was diagnosed clinically

according to the National Institute of Neurological and Communica-

tive Disorders and Stroke/Alzheimer’s Disease and Related Dementias

Association criteria for probable AD in ADNI and AddNeuroMed.11

MCIwas diagnosedwhen therewas objectivememory impairment but

without meeting the criteria for dementia.9,10 Written informed con-

sent was obtained at the time of enrollment and included permission

for analysis and data sharing. The protocol and informed consent forms

were approved by the institutional review board at each participating

site.

2.2 Genotyping and imputation

Genome-wide genotyping was performed using Illumina GWAS array

platforms (Illumina Human610-Quad BeadChip, Illumina HumanOmni

Express BeadChip, and Illumina HumanOmni 2.5M BeadChip).12,13

Apolipoprotein E genotyping was separately conducted.13 Using

PLINK 1.9 (www.cog-genomics.org/plink2/),14 we then performed

standard quality control (QC) procedures for samples and SNPs as

described previously.15 SNPs with a SNP call rate<95%, Hardy-

Weinberg P-value <1 × 10–6, and a minor allele frequency (MAF)<1%

were discarded. Samples with sex inconsistencies and sample call

rate<95% were eliminated. To prevent spurious associations

due to population stratification, we used multidimensional scaling

http://www.cog-genomics.org/plink2/
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analysis to select only non-Hispanic participants of European ancestry

that clustered with HapMap CEU (Utah residents with Northern

and Western European ancestry from the CEPH collection) or TSI

(Toscani in Italia) populations.16,17 After QC procedures, because

these cohorts used different genotyping platforms, we imputed

un-genotyped SNPs separately in each platform using MaCH soft-

ware with the Haplotype Reference Consortium data as a reference

panel.18,19

2.3 Amyloid (A), tau (T), and neurodegeneration
(N) biomarkers for AD

Brain amyloid deposition from amyloid PET as an amyloid biomarker,

CSF phosphorylated tau (CSF p-tau) levels as a tau biomarker,

and entorhinal cortex thickness from MRI as a neurodegener-

ation biomarker were used. For assessment of cortical amyloid

burden in ADNI, we used preprocessed (co-registered, averaged,

standardized image and voxel size, uniform resolution) [18F] flor-

betapir PET scans20 and calculated a mean standardized uptake

value ratio (SUVR) using a whole cerebellum reference region as

previously described.21 CSF p-tau levels were measured by val-

idated and highly automated Roche Elecsys electrochemilumines-

cence immunoassays (Roche Diagnostics).22 Details of CSF collec-

tion are explained on the ADNI website (http://www.adni.loni.usc/

edu/data-samples/biospecimen-data). CSF p-tau values were log-

transformed to follow a normal distribution. Amyloid PET and

CSF p-tau data were not available in AddNeuroMed. As a neu-

rodegeneration biomarker, entorhinal cortex thickness from T1-

weighted brain MRI scans was measured using FreeSurfer version 6.0

(surfer.nmr.mgh.harvard.edu).23

2.4 Cognitive performance

To assess cognitive performance, Alzheimer’s Disease Assessment

Scale-Cognitive subscale (ADAS-Cog)24 was used in ADNI and

AddNeuroMed. ADAS-Cog is a cognitive test battery that evaluates

learning and memory, language production, language comprehension,

constructional praxis, ideational praxis, and orientation.

RESEARCH INCONTEXT

1. Systematic Review: The authors reviewed the literature

using a PubMed and Google Scholar search. There is

increasing evidence that IFITM3 modulates amyloid beta

production in Alzheimer’s disease (AD). It is therefore

possible that single-nucleotide polymorphisms (SNPs)

in IFITM3 could be associated with cognition and AD

biomarkers.

2. Interpretation: This is the first study to show that

rs10751647 in IFITM3 is associatedwith less amyloid and

tau burden, less brain atrophy, and less cognitive decline,

providing mechanistic insight regarding involvement of

immune activity and infection in AD.

3. Future Directions: Functional studies in larger indepen-

dent cohorts and animal models should be performed to

investigate themechanistic roles of rs10751647 in cogni-

tive decline and AD pathology.

2.5 Statistical analysis

Gene-based association analysis of IFITM3 with ADAS-Cog in ADNI

was performed using a gene-based test in PLINK with additive genetic

models adjusted for age, sex, and education, where common SNPs

(MAF > 5%) located within ±20kb of upstream and downstream

regions of IFITM3 were selected. Permutation (20,000 permutations)

was used to adjust formultiple testing. Independently associated SNPs

based on P =.05 and an r2 threshold of 0.5 were selected and used in

gene-based analysis of IFITM3. Association results of SNPs in IFITM3

were visualized using LocusZoom.25

Association analysis between SNPs and longitudinal cognitive

decline in ADNI and AddNeuroMed was performed using a linear

mixed effects model. The variable of interest was the interaction of

SNPs and time. The dependent variable was ADAS-Cog, with the fixed

effects being age, sex, and education and the random effect being

subject.

The identified significant SNPs were used for further analysis to

explore associationwith disease progression andA/T/Nbiomarkers for

TABLE 1 Demographics of the study sample

Cohort Diagnosis at baseline N Female (%) Age, mean (SD)

ADNI (N= 1565) CN 458 228 (49.8%) 74.1 (5.70)

MCI 794 317 (39.9%) 72.7 (7.62)

AD 313 135 (43.1%) 74.7 (7.80)

AddNeuroMed (N= 633) CN 221 142 (64.2%) 76.5 (6.17)

MCI 201 108 (53.7%) 74.3 (5.92)

AD 211 120 (56.8%) 74.9 (5.78)

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CN, cognitively normal older adults; MCI, mild cognitive impair-

ment; SD, standard deviation.

http://www.adni.loni.usc/edu/data-samples/biospecimen-data
http://www.adni.loni.usc/edu/data-samples/biospecimen-data
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AD. The effect of SNPs on disease progression from MCI to demen-

tia was assessed using a Cox proportional hazard model adjusted

for age, sex, and education. Association analysis between SNPs and

A/T/N biomarkers including brain amyloid deposition from amyloid

PET, CSF p-tau levels, and entorhinal cortex thickness from MRI was

performed using linear regression models adjusted for age, sex, and

education. For entorhinal cortical thickness, MRI field strength and

intracranial volume (ICV) inADNIand ICV inAddNeuroMedwereaddi-

tionally adjusted for, respectively. Furthermore, the SurfStat software

was used to perform whole brain surface-based analysis of cortical

thickness to examine the effect of SNPs on brain structural atrophy

on vertex-by-vertex bases by applying a general linear model (GLM)

approach.26 GLM approaches were developed using age, sex, educa-

tion, ICV, and MRI field strength as covariates. In the whole brain

surface-based analysis, the adjustment for multiple comparisons was

performed using the random field theory (RFT) correction method at

a 0.05 level of significance. Statistical parametric mapping (SPM) was

used to perform whole brain analysis of brain amyloid deposition to

examine the effect of SNPs on amyloid burden across the whole brain

using a linear regression analysis with age and sex as covariates.27 The

adjustment for multiple comparisons was performed using the false

discovery rate (FDR) correctionmethod at a 0.05 level of significance.

Linear mixed effect analysis, Cox proportional hazard analysis, and

linear regression analysis were performed using R version 4.0.5 (www.

R-project.org).

In addition, Genotype-Tissue Expression (GTEx; https://gtexportal.

org/home/) data from GTEx Analysis Release V8 (dbGaP Accession

phs000424.v8.p2) were used to investigate eQTL in tissue-specific

gene expression.

3 RESULTS

A total of 2198 participants were included from two independent

cohorts (1565 from ADNI and 633 from AddNeuroMed) in this study

(Table 1).

3.1 Gene-based association analysis of IFITM3
with cognitive performance

Gene-based analysis of IFITM3 using 112 common SNPs (MAF > 5%)

within ±20kb regions surrounding the IFITM3 gene showed that

IFITM3 was significantly associated with ADAS-Cog (permutation-

corrected P-value = 1.25 × 10–3), and five independently associ-

ated SNPs were identified based on P = .05 and an r2 threshold of

0.5 (Table S1 and Figure S1 in supporting information). Two SNPs

(rs10751647 and rs2091850) in IFITM3 were significant (P-value

<4.46 × 10–4 [= 0.05/112]) after the Bonferroni correction and were

used for further analyses. Genotypes of rs10751647 and rs2091850

and its corresponding participant numbers are shown in Table S2 in

supporting information. As minor alleles, rs10751647 and rs2091850

have C and T alleles, respectively.

F IGURE 1 Association of rs10751647with longitudinal cognitive
decline and disease progression fromMCI to dementia. Association of
rs10751647with longitudinal cognitive decline and disease
progression fromMCI to dementia was analyzed using a linear mixed
effects model and Cox proportional hazardmodel, respectively,
adjusted for age, sex, and education. As the number of minor alleles of
rs10751647 increases, rs10751647was associated with less
cognitive decline rates (P-value of 6.63×10–8 in ADNI [A] and
2.30×10–3 in AddNeuroMed [B]) and decreased risk of disease
progression fromMCI to dementia (HR 0.79 in ADNI [C]). ADAS-COG,
Alzheimer’s Disease Assessment Scale–Cognitive subscale; ADNI,
Alzheimer’s Disease Neuroimaging Initiative; HR, hazard ratio; MCI,
mild cognitive impairment

http://www.R-project.org
http://www.R-project.org
https://gtexportal.org/home/
https://gtexportal.org/home/
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F IGURE 2 Association of rs10751647with brain amyloid deposition in amyloid PET and p-tau levels in CSF in ADNI. Association of
rs10751647with amyloid and tau burdenwas analyzed using linear regressionmodels adjusted for age, sex, and education. As the number of
minor alleles of rs10751647 increases, rs10751647was associated with less amyloid burden in amyloid PET (P-value= 8.65×10–4) (A) and less
p-tau levels in CSF (P-value= 6.59×10–3) (B). ADNI, Alzheimer’s Disease Neuroimaging Initiative; CSF, cerebrospinal fluid; PET, positron emission
tomography; p-tau, phosphorylated tau; SUVR, standardized uptake value ratio

3.2 Longitudinal association analysis
of rs10751647 and rs2091850 in IFITM3
with cognitive decline

More minor alleles for rs10751647 were significantly associated

with less longitudinal cognitive decline with beta-value (P-value) of

–1.07×10–2 (4.69×10–5) in ADNI and –1.26×10–1 (2.30×10–3) in

AddNeuroMed (Figure 1A,B). However, rs2091850 was not associ-

ated with longitudinal cognitive decline in ADNI or AddNeuroMed

with beta-value (P-value) of –3.39×10–3 (2.73×10–1) and –1.05×10–1

(5.63×10–2), respectively. rs10751647 replicated in association with

longitudinal cognitive decline andwas used for further analysis.

3.3 Disease progression: MCI conversion
to dementia

The effect of rs10751647 on disease progression from MCI to

dementia was evaluated using a Cox proportional hazards model.

In ADNI, more minor alleles for rs10751647 were associated with

decreased risk of disease progression with HR 0.79 and 95% confi-

dence interval (CI; 0.67, 0.94; Figure 1C). The result was not replicated

in AddNeuroMed.

3.4 Association of rs10751647 in IFITM3
with A/T/N biomarkers for AD

3.4.1 Amyloid biomarker (amyloid burden
measured by amyloid PET)

Association analysis between brain amyloid deposition and

rs10751647 showed that more minor alleles for rs10751647 were

significantly associated with less amyloid burden with beta-value

(P-value) of –0.03 (8.65×10–4). The results were shown in violin plots

(Figure 2). In addition, in an unbiased way, we performed a detailed

whole-brain analysis to determine the effect of rs10751647 on brain

amyloid deposition on a voxel-wise level. We identified significant

associations (FDR-corrected P <.05; Figure 3). More minor alleles

were significantly associated with reduced amyloid deposition in a

widespread pattern, especially in the bilateral frontal, parietal, and

temporal lobes.

3.4.2 Tau biomarker (CSF p-tau levels)

Association analysis between CSF p-tau levels and rs10751647

showed that more minor alleles for rs10751647 were significantly

associated with smaller CSF p-tau levels with beta-value (P-value) of

–0.02 (6.59×10–3). The association results were shown in violin plots

(Figure 2).

3.4.3 Neurodegeneration biomarker (entorhinal
cortical thickness on MRI)

In ADNI, more minor alleles for rs10751647 were associated with

larger entorhinal cortical thickness with an odds ratio (P-value) of 1.03

(4.00×10–2), whichwas replicated in AddNeuroMedwith an odds ratio

(P-value) of 1.08 (2.00×10–2). Further, we performed a detailed whole-

brain surface-based analysis usingmultivariable regressionmodels and

assessed the effect of rs10751647 onwhole-brain cortical thickness in

anunbiasedway.We identified significant associations for rs10751647

(RFT-corrected P < 0.05; Figure 3). More minor alleles of rs10751647

were significantly associated with larger cortical thickness in bilateral

temporal lobes including the entorhinal cortex (Figure 3).
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F IGURE 3 Whole brain association analysis of rs10751647with amyloid deposition (amyloid PET) (A) and cortical thickness (MRI) (B) in
ADNI.Whole-brain voxel-based imaging analysis (A) of amyloid deposition showed that moreminor alleles of rs10751647were significantly
associated with reduced amyloid deposition in a widespread pattern, especially in the bilateral frontal, parietal, and temporal lobes. Statistical
maps were thresholded using a false discovery rate for amultiple testing adjustment to a corrected significance level of 0.05.Whole-brain
surface-based analysis (B) of cortical thickness across the brain surface showed that moreminor alleles of rs10751647were significantly
associated with larger cortical thickness in the bilateral temporal lobes including the entorhinal cortex. Statistical maps were thresholded using a
random field theory for amultiple testing adjustment to a corrected significance level of 0.05. ADNI, Alzheimer’s Disease Neuroimaging Initiative;
MRI, magnetic resonance imaging; PET, positron emission tomography

3.5 Expression quantitative trait loci analysis

To explore association between rs10751647 and expression levels

of IFITM3, we looked at tissue-specific eQTL results in the GTEx

database (Figure S2 in supporting information). More minor alleles for

rs10751647 were associated with increased IFITM3 expression levels

in blood and brain.

4 DISCUSSION

In this study, we found that IFITM3 was significantly associated

with cognitive performance by gene-based association analysis

(permutation-corrected P = 1.25×10–3), and two SNPs (rs10751647,

rs2091850) in IFITM3 were significantly associated with cognitive

performance. Particularly, rs10751647 was associated with cognitive
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decline rates in ADNI, which was replicated in an independent cohort,

AddNeuroMed. In addition, rs10751647 was significantly associated

with Aβ deposition measured by amyloid PET scan, CSF p-tau levels,

and entorhinal cortical thickness measured by MRI scan in ADNI. The

association of rs10751647 with entorhinal cortical thickness was

replicated in AddNeuroMed. Participants with minor alleles (C) of

rs10751647 have less cognitive decline, less amyloid and tau burden,

and less brain atrophy. Tissue-specific eQTL analysis in healthy indi-

viduals showed that rs10751647 is associated with IFITM3 expression

levels in blood and brain.

For amyloidopathy of AD pathogenesis, our study showed that

an increasing number of minor alleles of rs10751647 was related

to less amyloid burden. In particular, whole-brain imaging genetics

analysis showed the association of rs10751647 with reduced amy-

loid deposition, especially in the bilateral frontal, parietal, and tem-

poral lobes. A recent study suggested direct association between

IFITM3 and Aβ production. Immune activation by infection or inflam-

matory condition induces proinflammatory cytokines, which upreg-

ulate IFITM3 expression binding presenilin1 in a γ-secretase com-

plex near the active site promoting cleavage of Aβ.7 In the study,

IFITM3 expression was higher in AD compared to the control group

in the temporal cortex. This shared brain region with our results

might suggest that the temporal area could be associated with IFITM3

activity.

For tauopathy and neurodegeneration, our study showed that

rs10751647 was related to tau burden and brain atrophy. IFITM3 was

suggested to inhibit virus-triggered induction of type I interferon,28

which may affect pathological tau phosphorylation and subsequent

neurodegeneration.29

One of the limitations in our study is that we chose the ±20kb

window around IFITM3 as the gene boundary for gene-based associ-

ation analysis. Although the 20kb window provides an optimal width

for including regulatory SNPs of IFITM3, this may exclude the possibil-

ity of identifying significant IFITM3-related SNPs outside this region.

Another factor that should be considered is that our study is con-

tradictory to a recent study showing that increased expression levels

of IFITM3 in AD brains was associated with increased amyloid load,7

whereas our study showed that the minor allele of rs10751647 was

associated with increased expression of IFITM3 in brain and blood of

healthy individuals and less cognitive decline, less amyloid and tau bur-

den, and less brain atrophy inMCI and AD. Functional studies are war-

ranted to investigate the mechanism of the effect of rs10751647 on

cognitive decline, amyloid and tau burden, and brain atrophy. Addition-

ally, our studywas performedwithmodest sample sizes from two inde-

pendent cohorts, and our results need to be validated by replication

studies in independent larger data sets.

In conclusion, we found that IFITM3 SNP, rs10751647, was associ-

ated with less vulnerability to amyloid, tau burden, neuronal degener-

ation, clinical progression, and cognitive decline rates. Association of

the SNP with neuronal degeneration and cognitive decline rates was

replicated in the independent cohort, AddNeuroMed. This study pro-

vides further supporting evidence of the relationship between IFITM3

and AD pathogenesis.
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